PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering
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In this paper the phase-space structure of a realistic chaotic scattering system, namely, the collisions of He
atoms off Cu surfaces with different degrees of corrugation, is investigated. We demonstrate that the ho-
moclinic tangle generated by a principal unstable periodic orbit, which corresponds to the unperturbed motion
of the He atom traveling parallel to the surface in the asymptotic region, determines the entire scattering
dynamics of the system. The fractal properties and some physical invariant features of the system can be
understood using suitable Poincaarfaces of section. Moreover, in this paper we also analyze in detail the
periodic orbit structure in the interaction region, and show how the homoclinic chaotic trajectories can be
organized in a similar fashion to the well-known Farey tree organization for resonances. The consequences of
this analogy for the different scaling laws observed in chaotic scattering problems are discussed.
[S1063-651%97)13107-5

PACS numbgs): 05.45:+hb, 79.20.Rf

[. INTRODUCTION collisions, encounters of artificial satellites, dynamics of vor-
tices, scattering off a magnetic dipole, €tt0,13,14, a frac-
Many processes of chemical and physical intefggts tal structure was observed in the plots of a scattering func-
phase chemical reactions, adsorption and diffusion on sution (final scattering angle or time delgysorresponding to
faces, etg. can be adequately treated just at the classicahn underlying Cantor set of singularities. The main scaling
level [1,2], and here the understanding of the Hamiltonianlaws of this Cantor set were numerically found and applied
dynamics and phase space has been determinant in the de-a semiclassical study of diffraction intensitigl?].
velopment of classical and semiclassical theori&]. The self-similarity and other fractal features of the scat-
These theories are often an easier and accurate enough altegring function plots are a direct consequence of the partition
native route to more complicated quantum calculations, andf the phase space into an invariant fractal tilifgl(c)]
many times are based on the assumption that the underlyinghich organizes the scattering dynamics in a very systematic
dynamics are chaoti@,4]. Although the existence of chaotic way. Realistic models for atom-molecule or atom-surface in-
scattering in some simple models of chemical reactions antkractions imply the use of soft potentials or potentials attrac-
diffraction of atoms from surfaces was observed two decadetive for large distances and repulsive for short distances. In
ago [7,8] (and not always properly identifigdonly quite  our case, as in other soft interacting systems with periodici-
recently has it begun to be intensively studied and characteties in the potentiaJ11,15,16, the asymptotic motion is an
ized from the mathematical point of view. Many studies inunstable periodic orbit whose stable and unstable manifolds
chaotic scattering have been done with simple mof@ls determine the entire scattering dynamics of the system. In
mainly area-preserving maps and hard-wall potentials, alanalogy to previous work in one-dimensional maps and
though some molecular systems have also been consideratbm-molecule collision§19,11] hereafter we will call this
[10-12. The distinctive feature of scattering systems is thethe principal unstable periodic orbiPUPQ. In this paper
infinite volume of the phase space at a given energy due tawe show, for the scattering of He atoms off corrugated Cu
the existence of an asymptotic region where the interactiosurfaces, how the use of the Poincaerface of section
potential can be neglected. The observables are calculated (809 of the homoclinic tangle originated by the PUPO at a
the final asymptotic region where the dynamics is trivially given energy provides a coherent picture of the scattering
integrable, although they obviously depend on the intricacieslynamics and its interaction with the classical objects
of the potential in the interaction region. In this sense apresent into the bounded region. Moreover, the close relation
knowledge of the bound dynamics within the interaction re-existing between chaotic scattering trajectories and the prin-
gion can help to clarify the long-time behavior of the chaoticcipal periodic orbits(PO’s) of the system will be also ana-
dynamics(the existence of the set of singularities of the scatdyzed in detail, establishing a connection between the Farey
tering functions that connect incoming to outgoingtree organization of PO’s and the symbolic dynamics for
asymptotic regions chaotic scattering trajectories. In the chaotic regime, the
The present contribution was motivated by some recenproperties of the scattering functioii§actal dimension of
results of the authorgl2] in the numerical investigation of the invariant set of singularities, scaling laws, escape rates of
the classical dynamics of a realistic model for the scatteringhe chaotic trajectories, eicdepend on the value of some
of He atoms from Cu surfaces. There, as in previous workgarameters of the Hamiltonian. The natural choice for such
on other physical scattering systems such as atom-diatomarameters in conservative Hamiltonian systems is the total
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TABLE |. Potential energy surface for the scattering of He from spect to thex=0,a andx=a/2 planes & being the unit cell

Cu surfaces at 21 meM.7].

Potential energyV(x,z) =Vy(2) +Vc(X,2)

Morse potentialVy,(z) =D(1—e™ %%)2
D=6.35 meV,a=1.05 A*

Coupling potentialVc(X,z) =V,(2) V,(X)
V,(z) =D exp(~2a2)

2nmX

_2nmx
Vx(x)=2 rncosTJrsns
n

In—-
a

Fourier coefficients for Q1.10):
r,=0.03,5,=0.0
r,=0.0004,s,=0.0

Unit cell length for Ci§110: a=3.6 A

Fourier coefficients for C17):
r,=0.1828,s,= —0.0836
r,=0.0593,s,=0.0157
r;=0.0116,s;=0.0002
r,=0.0017,s,=0.0010

Unit cell length for C§117): a=9.12 A

energy, and the bifurcations of the main principal families of
PO’s with the energy will be considered. Also, the influence
of the corrugation of the surface will be studied by analyzing

two different crystallographic faces.

The organization of the paper is as follows. In Sec. Il we
give a brief account of the model employed, which has bee

described elsewher@ 2], and of the main conclusions ob-

tained in the numerical investigation of the final scattering
angles vs initial impact parameter plots. In Sec. Ill, the ge
ometry imposed in the phase space by the homoclinic tang|
is discussed, and its relation to the results in the final angl
vs impact parameter plots described. Section 1V is devoted t

a study of the bounded region of the system, presenting

analysis of the main PO’s and their evolution with energy.
The interrelation between the bounded and the scattering d
namics is considered in Sec. V. The paper is concluded by

summarizing our conclusions in Sec. VI.

II. MODEL SYSTEM AND TRAJECTORY
CALCULATIONS

The problem we have chosen to study is the scattering

“He atoms off Cu surfaces with different degrees of corru

gation. In particular, elastic collisions with Cil0 and
Cu(117) will be considered. The system can be modeled wit
a two degrees of freedom Hamiltonian

P2+ P2

H(Py,P,,x,2)= om

+V(x,2), D

length. The more corrugated @©id7) function does not
have this symmetry.

Classical trajectories are propagated starting from the fol-
lowing initial conditions

20~ Zmax

Xo= —Zmadand;+ba

)
on= —v2mEcoss;

Py~ v2mEsing, ,

wherez,,,, represents a value af sufficiently large so that
the interaction potential can be neglectédis the normal-
ized impact parameter @b=<1), E the collision energy,
and 6; the initial incident angle. This angl¢ initially deter-
mines the partition of the total energy and momentum be-
tween the two modes.

In previous work[12] many trajectories were calculated
and analyzed. In those papers our attention focused on the
transition to chaos, considering the scattering at different val-
ues of the incident anglé; at a fixed value of the energy.
The onset of chaos was identified in the classical deflection
function (final scattering angl®;) vs impact parameter plots
when one of the rainbow anglémaxima or minima of the
Rassical deflection functiorreaches a value of 9012(a)].

At these points, what happens is that when the He particle
hits the inner wall of the potentidlow values ofz), enough
‘momentum(or translational energyis transferred from the
erpendicular to the parallel modes, and the trajectory be-
omes trapped inside the potential well existing along the
erpendicular mode. Afterwards, the He particle begins its
otion, repeatedly bouncing with the Cu surface, until
enough perpendicular momentum is regained that it can
Yeave the surface. In those flights the particle travels a dis-
ance corresponding to many cell units, loosing memory of
the initial conditions. Theés-b plots then consist of a
smooth, well-behaved part corresponding to direct scattering,
and a very ill-behaved region of trapped trajectories called
the chattering regiorisee, for example, Fig. 1 belowThe
o(fhattering region consists in turn of a series of smooth sub-
domains oricicles [10(c)], separated by regions of more
‘complicated behavior containing an infinite number of sin-
hgularities[see Fig. {c)]. When these chaotic regions are ex-
panded they again show the same structure at finer and finer
scales. The whole structure is then(multi)fractal [18].
Moreover, the icicles observed in the chattering regions of
the 6;-b plots are organized in a hierarchical way. All trajec-
tories associated with a given icicle are alike, and can be
characterized by the number of bounces with the surface and

wherex andz are coordinates parallel and perpendicular tothe number of units cells traveled between consecutive
the surface, respectively, anf(x,z) is a corrugated Morse bounces. Then a symbolic labeling can be used to classify
potential, whose parameters have been taken from the literhem. An extra symbol is required in this case, namely,
ture[17] and are presented in Table I. It is interesting to note* +" or “ —,” indicating if a given icicle is situated to the

at this point that the corrugation for CiL0) is just a sum of right or left of the central icicle, which corresponds to the

cosine functions, so that the potential is symmetric with re-dcicle with a minimum number of unit cells traveled. One
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FIG. 1. Final scattering anglé; (in degreesvs impact parametes for the scattering ofHe atoms off(a) Cu(110 surfaces, andb)
Cu(117) surfaces, at a total energy Bf=21 meV and an incident angl&=90°. (c) Expansion of the chattering region appearing in part
(b). (d) Expansion of the gap between icicle® ] and[43" ] of part(c).

possible unique labeling scheme constructed along this linasymptotically[sufficiently far apart from the center of the
was given in Ref[12](a), and will be used throughout the chattering region, since we see in Fig&)land Xd) that the
paper. invariant shape of the pattern is achieved for gaps close to
In Figs. 1@ and Xb) the 6;-b plots for the C¢110 and the edgeka two-scale fractal. We consider that there is one
Cu(117) surfaces at a total energy of 21 meV aad=90° intragenerational scaling facter mapping a given icicle or
are presented. The central icicles of the chattering regions igap of one generation of the fractal into an icicle or gap
both figures correspond to trapped trajectories bouncininside the same generation, and an intergenerational scaling
twice on the surface and traveling, respectively, eight andactor 8 which transforms an invariant pattern of one gen-
one unit cells in the jump. The number of traveled unit cellseration into a pattern of another generation. For1d),
increases by one as we move to the next icicle either to thboth scaling factors were numerically found to ke 0.98
right or to the left in the chattering region. In FigicLlwe  and 8=0.000 35[12(c)]. Moreover, these values amede-
present, expanded, the chattering region corresponding fgendentof the incidence angle, and we also found that the
Cu(117 [Fig. 1(b)]. In it, all features described are readily invariant pattern of Figs. (t) and 1d) are identical to the
observed. Let us consider now what happens in the gapshole chattering region obtained at grazing ang&sproxi-
between icicles of this first generation. For example, an exmately 90°). The same conclusion is true for other scattering
pansion of the region between icicle42” ] and[437] is  functions such as delay times or other fractal properties
presented in Fig. (@). In it one observes the icicles associ- (fractal dimension or escape ratén Sec. lll we explain this
ated with the trapped trajectori€43™,n] for Cu(117). The invariance with respect to the initial angke by means of the
corresponding trajectories bounce three times with the surSOS of the phase space.
face, traveling 43 unit cells in the first jump, and(begin-
ning fromn=1 for the two central iciclesin the second.
This pattern, which repeats hierarchically on all scales, will
play an important role in the rest of the discussions in the
paper. It allows one to label each icicle boysigned integers, As was mentioned in Sec. |, the whole dynamics of the
the firstm—1 identifying the generation to which the icicle He-Cu scattering process can be presented in a rather com-
belongs, and the last one identifying the position of the iciclepact way by considering the homoclinic tan¢] formed
within its own generation. As we will discuss later, the frac-in phase space by the stable and unstable manifolds emanat-
tal structure of the chattering region can be consideredhg from the PUPO. According to what was discussed about

I1Il. HOMOCLINIC TANGLE
AND FRACTAL INVARIANT TILING
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the origin of the onset of chaos in the preceding section, 2.0
the PUPO in our system corresponds to a trajectory in which
the He atom travels parallel to the Cu surface at an infinite
separation of it £>z,.x, Px=0). Since the potential func- 1.0-
tion [17] is periodic along, the dynamics of the trajectories
can be followed quite conveniently by using aK,) Poin- ?,
care surface of section (SO taking x=Xx,+na S 00
(n=0,1,...,2) as the sectioning plane. Obviously, a8
Xo=0,a or Xxo=a/2 are good choices to obtain a dynamically
significant SOS, especially in the more symmetrigTh0) ~1.01
case(see Fourier coefficients in Table |
The corresponding results for an energy of 21 meV are s
shown in Fig. 2 for both corrugations, Qui0 and Cy117), 2.0 , ‘
considered in this paper and the SOS placed,at0. Notice -5 5 15
in passing that Fig. (&) corresponds to thé;-b plot of the z(a.u.)
homaoclinic tangle unstable brand¢propagation forward in
time). When examined the two plots presented in Fig. 2 are 4.0
very different. At this energy, the scattering for @LO
[Fig. 2(a)] exhibits a mixed dynamics, that is, chaotic trajec- 3.0
tories coexist with regulaKAM islands, which are orga- 20
nized in this case around the stable periodic perpendicular
motion (x constank This corresponds to what is called in the ~ 107
literature a nonhyperbolic regime0], which is character- 3 0.0
ized by presenting an algebraic survival probability or exit e
time of the trapped trajectorig®1]. On the other hand, for A" -1.01
the Cy117 surface the manifolds appear much more de- 20+
formed, suggesting a more irregular dynamics. The area en- ’
closed by the oscillationobes and turnstilegl9)) is larger, -3.01
which indicates that the transport from the scattering to the 40
trapped[ 23] region is larger. Also, no visible traces of regu- 5 5 15 25
larity are observed in this region. As we will see in Sec. IV, z(a.u.)

the central stable PO has become unstable. This suggest that
the dynamics should be hyperbolic. Proving the hyperbolic- FIG. 2. Homoclinic tangle corresponding to the principle un-
ity of a dynamical system is a very difficult task for other stable periodic orbitPUPQ atE=21 meV for the scattering offy)
than simple analytical maps. There are, however, several n@Gu(110 and(b) Cu(117) surfaces.
merical criteria to distinguish between hyperbolic and non-
hyperbolic regimes. The hyperbolic regime is in general In Fig. 3 we plot the pseudoseparatrix of the homoclinic
characterized by exponential escape rates of the trapped trangle for the C(L10 surface. It was obtained by propagat-
jectories[21], and also by a Gaussian distribution in theing only the initial conditions corresponding to the direct
Lyapunov exponents spectfa4]. In our case we will show collisions part of Fig. (a). According to the transport theory
that the main PO is highly unstable, and that no further bi-of Hamiltonian systemgl9], every trajectory initiated inside
furcations for higher energies take place; this implies that thehe pseudoseparatrix will enter the interaction region through
last homoclinic tangenc}19] has taken place, and that we the entrance turnstile, and will remain trapped in it for some
are in the hyperbolic or fully developed chaotic regif®  time before leaving it through the exit turnstifsee Fig.
Here it is necessary to point out that sometimes power-lavd(@)]. In a recent paper, Tiyapan and JaFfel(c)] showed
escape rates have also been found in hyperbolic systenw every group of complex forming trajectories gives rise
[20(a),20(b)]. This happens in our model too. Since at longto a sequence of tiles inside the interaction region, in such a
distances the Morse potential is the dominant part of thevay that the whole area can be covered hierarchically with
interaction, and this potential tends exponentially slowly tothem. Moreover, the characteristics of this sequence of tiles
the top of the ridgeD, one can see that the PUPO is ais related to the characteristics of the trajectories. Thus, the
parabolic point of the Poincammap. Consequently, nearby fractal character of thé;-b plots is a mere reflection of the
orbits diverge only linearly with time and escape ratesfractalinvariant tiling of the interaction region. Let us con-
present a power law behavif22]. sider, for example, the two central icicles of the chattering
There is another aspect of Fig. 2 worth commenting uponregion for C110), labeled[8~]. By propagating them for-
The homoclinic tangle partitions phase space into two unward and backwards in time the pattern shown with thick
connected regions: one external, where only direct scatterinines in Fig. 3b) is obtained. To help following the dynam-
take place; and another internal, corresponding to boundeds, we have numbered in the figure the consecutive itera-
dynamics, where trajectories are trapped for some time beaions corresponding to the propagation forward. This propa-
fore they leave the surface. Due to the symmetries in th@ation forward gives the two segments of each tile confined
potential, this curve is symmetric upon reflection through theto the unstable manifolone segment per iciclewhile the
P,=0 plane for C@110), and nonsymmetric for Gu17). propagation backward renders the two segments confined to
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the stable branch. The intersection points are the homoclinic
trajectories belonging both to the stable and unstable
branches, which are asymptotic in the infinite past and future
to the PUPO. In our case, the homoclinic orbits correspond
to the leftmost and rightmost points of each icicle; for them
#;=90°, and therefore constitute the chaotic component of
the dynamics or the invariant Cantor $&8] of singularities
Trapping present in thed-b plots. This set is of measure zero and
X countable.

In analogy to the symbolic labeling of the icicles de-
scribed in Sec. Il, a labeling scheme for the tiles can be
Direct devised. Any given trapped trajectory will visit as many tiles
Scattering inside the interaction region as the total number of unit cells
traveled between the first and last bounéesnember that
we have placed our SOS at intervals of periodie}y Con-
sequently, each different type of trajectory or icicle will give
rise to a family of tiles characterized by two numbers
(m:n), m being the number of times the tiles cross the
P,=0 line (equivalent to the generation or number of
bounces of the trapped traject@randn the total number of
tiles inside the interaction regiaoftotal number of unit cells
jumped. Notice that there is not a one-to-one correspon-
dence between icicles and families of tiles, since in general
there will be several iciclegat least two, one from the right
part of the fractal and the other from the Jefiriginating
from the same family. However, although this notation for
the families of tiles is not unique, it is quite convenient for
our purposes because of its analogy with the winding num-
bers of PO's.

Let us next discuss how the homoclinic tangle obtained
for 6;=90° can be used to predict and understand the dy-
namics of the He-Cu collisions for other angles of incidence.
For 6,#90° the partition of the energy between the two
modes will be different from that of the PUPO. However, it
is obvious that the initial conditions of E(R) also generate
a manifold in phase space, which can be plot on top of the
homoclinic tangle fo,=90° [see Fig. &)]. If the manifold
is such that it does not intersect the stable branch of the
homoclinic tangle, it will evolve close to the unstable branch
without ever entering the interaction regifthe thick line in
Fig. 3(c)], and the scattering will be regular. On the other
hand, if a portion of it intersects the stable branch, that por-
tion will fall at some point into the entrance lobe of the
turnstile, leading to temporary trapping. Moreover the mani-
fold originated by the initial conditions will not cross all the
tiles within the intersected lobe of the stable brafetme of
the inner ones will be missédtherefore the central part of
the chattering region in thé;-b plots will be different than
that at #,=90°, but the lobes intersected will display the
same pattern in thé;-b plot because they follow the same
tiling as the PUPO does. The corresponding invariant pattern
will be the same as that of the chattering region of Fig. 1.
This explains the invariance of the scaling laws and other

FIG. 3. (a) Pseudoseparatrix between direct and chaotic scattelj-raCtal features with respect to the incident angle.

ing for the He-C110) surface collisions aE =21 meV. The inner

part of the turnstiles have been marked with thick lirgs.Family IV. PERIODIC ORBITS IN THE INTERACTION REGION

of tiles (1:8) corresponding to th¢8*] icicles. (c) Homoclinic

tangle associated with the He-@a0) scattering principle unstable In this section we will investigate in further detail the
periodic orbit(dots at E=21 meV, and unstable manifolghick  dynamical structure of the interaction region, especially in
line) for 6;=74° at the same energy. Notice that this manifold relation to PQO’s. In our system we have a special type of PO.
corresponds to the onset of chaos in this scattering problem.  Since the potential-energy surface extends to infinity in the

2.0

1.0 1

P (a.u.)
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x coordinate and our system is open, the trajectories are 6.5
mainly unbounded. However, due to the periodicity of the ',\ a
potential we have some trajectories which are confined in 5'5“:' .
Z, executing a periodic motion along Due to the way in 45k
which our SOS is calculated, these trajectories will cross it e
only in a finite number of points visiting them periodically: ~ 354
they are the equivalent to the usual PO’s of the more familiar = 5
bounded systems. N2 o%
Periodic orbits form a dense set in phase space. Although Noosqet
it is not possible to locate all of them, a general view of the 5
evolution of the main families of PO’s with some parameter, 057, 9 10
usually the energy, provides valuable information of the : *
dominant classical dynamical features. The main families of *
PO’s are usually defined from Weinstein's theor¢ab], ‘1-5(') S0 100 150 200 250

which states that around any equilibrium point of the poten- E(meV)
tial a number of PO’s equal to the number of degrees of
freedom of the system emerges. Multishooting and relax-
ation numerical methods have been applied to propagate the 6.5
main families and find bifurcations for systems up to six

300K

degrees of freedorf26] in a rather systematic way. How- >3

ever, this procedure is very time consuming since for every 451
energy step we can locate only one PO. For Hamiltonian '-‘-.
systems with some type of symmetry, PO’s having that sym- é‘..

metry can be more easily generated in a very systematic way
by using the method of the propagation of the symmetry
lines. The essence of the meth@¥] consists of finding for
each energy the intersections of a symmetry line with its
successive iterations under the Poincawap.

The dominant symmetry lines can be located by finding

z (a.u.)
— [\ W
(9,1 N (9.3

the set of points left invariant under the composition of a —1.5 Jr—— — : : :
reflectiono, and time reversal operatord27] acting on a 0 50 100 150 200 250
phase space poimgf= (Xxo+ €,2,P,,P,) as E(meV)
0 9=(Xg— €,2,— Py ,P,) (3 FIG. 4. Periodic orbit bifurcation diagram corresponding to the
He-CUu110 scattering obtained by propagation of tft® xy=a,
and and(b) xo=a/2 symmetry lines. Full circles correspond to unstable
periodic orbits, while the stable ones have been represented by
Tq=(Xo+ €,Z,— Py,— P,). (4) empty circles.
This set of points exists in our model only for the (CLO The bifurcation diagrams constructed using this procedure
potential, and is given by the line are shown in Fig. 4. We only followed up to the fifth itera-
tion of the symmetry lines§, and S;. Some representative
So=(%0,2,Px,0), (3 examples of these PO’s are shown in Fig. 5. Two points are

worth discussing in relation to Fig. 4. In the first place, we
find in both plots a central period-1 P@PO, which is
common to both symmetry lines and constitutes the main
family, thus originating the other higher period PO’s through
bifurcations. The second point is that, contrary to what usu-
P"eS,N S,y 6) ally happens in bounded generic Hamiltonian systems, the
behavior is less chaotic, in the sense that unstable PO’s with
are periodic orbits of periodr2and divisors. higher periods disappear, as energy increases. This i§ seenin
To obtain the PO’s of an even period, we have to define if 19- 6, where the homoclinic tangle corresponding to
addition the symmetry lin&, made of points left invariant E=400 meV is represented. Only the stable CPO seems to
underPoS, which is precisely the set of poin&Y%S,, i.e.,  Survive with a big structure of reguld&AM islands around

one of the two dominant symmetry lines evolved one-half ofit, but still some chaos exist due to very high-period unstable
the Poincarenap. Again intersections PO’s, although is not visible in the scale of the figure. The

CPO remains stable until very small enerdiapproximately
P%S NS, (7) 4 meV), when it becomes unstable due to a period-doubling
bifurcation.
will be PO’s of period 2+1 and divisors. In this way we The method of propagating symmetry lines allows the lo-
can generate all primitive families of symmetric PO’s of dif- calization of PO’s, but cannot predict which ones will appear
ferent periods. at a given energy. The occurrence of bifurcations giving rise

wherex,=0,a or x,=a/2. Denoting byP the Poincarenap
as defined at the beginning of Sec. Il and BY its nth
iteration, it can be showf27(a)] that the points given by the
intersections
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FIG. 5. Periodic orbits of periods (CPO), 4, and 5 for the 1.0 b S
He-Cu110 scattering atE=21 meV. The equipotential contour 0.0 4 /
line has also been included. ) /

-1.0 ;
to PO’s can be predicted using Hamiltonian bifurcation 2/
theory [28]. This theory indicates that in two-dimensional o 20
systems only five classes of bifurcations can take place: E 304
saddle center or pitchfork, period doubling, touch and go, e
four-island chain, andn-island chain(see Ref[28(c)] for a -4.0
detailed account

The location of each new bifurcation of period can be 5.0
found considering the trace of the Jacobian matrix,

.0 - T 1 i I 1] B T I
0 50 100 150 200 250 300 350 400
aPTIoPY  aPY92° E(meV)

Im= 8)

FIG. 7. Trace of the central periodic oriEPO Jacobian ma-

az™ 92°
trix for the scattering offa) Cu(110) and(b) Cu(117) surfaces.

az™ 9P?

wherez® andP? are the initial values of andP, in the SOS, _ . . , .
with j=1 if m=4, j=1 and 2 ifm=5, and so on. In this

and 2" and P their values after thenth iteration of the way it is possible to predidbcally the sequence of bifurca-
Poincaremap. According to bifurcation theory at the bifur- tior¥s of ;n iven PF()) It ShOU|)(/1 be en? hasized. however
cation points the trace of this Jacobian equals two. Moreover, y 9 : P ’ |

this trace can be related to that of the Jacobian for the CPE’S1at '_[here S no _general gl(_)bal theory that accounts for ‘T’l”
(period-1 P, so that arm bifurcation occurs when possible bifurcations of a given PO. A notable exception is

the theory developed for the 'Hen map by Tsuchiya and
Jaffebased on the symbolic dynamics of permutation groups
[29].

In Fig. 7(a) the CPO Jacobian matrix trace as a function
of the energy is represented. The bifurcations predicted by
Eqg. (9) and observed in Fig. 4 have also been marked in the
figure. Note that according to E¢9) an accumulation of
bifurcations of increasingly higher period is expected as we
approach the original saddle-center bifurcation. For many
chaotic scattering systems the generic route for the onset of
chaos has been described to be the appearance of a saddle-
center bifurcation creating one stable PO and one unstable
PO (the CPO and the PUPO in our ca$6,10e)], with the
homoclinic oscillations giving rise to complex formation.
Our model system has the peculiarity that the trace of the
CPO tends asymptotically to the point of that bifurcation as
the energy increases; that is, we always have some region of
chaos. In fact, the PUPO has Jgf=2 (it is a parabolic
orbit). Obviously, this is a problem of our model potential,
since at high energies only direct scattering is expected to be
observed experimentally. On the other side of the bifurcation
diagram the CPO remains stable to very low energies,

Tr(J;)=2cog2mj/m),

9

P (a.u)

FIG. 6. Homoclinic tangle corresponding to the HetCi0)
scattering system d& =400 meV.
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[1,m,n] [2,m+1,n+1] [3,m+2,n+2] m=2, 3,...
n=m+1l,m+2,...

z (a.u.)

FIG. 9. Construction tree for the first three generations of ho-
moclinic orbits in the He-C{1.10) scattering aE=21 meV.

close to a homoclinic point there is an infinite sequence of
PO’s [30] with increasing period. This fact is based on the
: : — existence of a Birkhoff normal form convergent around the
20 70 120 170 220 stable and unstable manifolds of an unstable fixed point of
E(meV) the Poincaremap. Indeed, unstable PO’s have been calcu-
lated analytically using the Birkhoff normal form for qua-
FIG. 8. Periodic orbit bifurcation diagram corresponding to thedratic maps. In our case the correspondence between the ho-
He-Cu117) scattering. moclinic points and PO'’s arises naturally if we consider that
each homoclinic point of the PUPO corresponds to a certain
where it becomes unstable due to a period-doubling bifurcachaotic trajectory, and there can be a PO of similar topology
tion. associated with it. In order to envisage this relation, let us
We will end this section with some comments about theconsider simple symbolic schemes for homoclinic orbits and
dynamics for the C{117) surface. In this case the potential PO’s.
has no reflection symmetry, and therefore it is not possible to Following the same labeling scheme used in Sec. Il to
use the method of symmetry line propagation to constructlassify the icicles of the chattering region, a symbolic tree
bifurcation diagrams. However, it is still possible to obtain for the organization of homoclinic orbits can be generated.
some valuable information from the Hamiltonian bifurcation The result is shown in Fig. 9. Here the symbolic chains have
theory. The CPO was calculated and happens to be vemhe same meaning as for the icicles, except for the fact that
similar to that for C@l110), although without showing the the signs have now been dropped since we are not interested
same symmetry. The trace of the Jacobian, as a function af distinguishing between the left and right parts of the frac-
the energy, is shown in Fig.(d); in it the locations of the tal for homoclinic orbits. Each orbit in thith generation
main bifurcations have been indicated. This PO turns un{makingi bounces against the surfads labeled byi inte-
stable atE=89 meV due to a period-doubling bifurcation, gers. The first one gives the number of unit cells jumped in
after which the system becomes hyperbdliemember the the first bounce, the second the number of unit cells jumped
homaoclinic tangle in Fig. @)]. Also, Fig. 1b) shows that jointly in the first and second bounce, and so on. Notice that,
the Lyapunov exponent decreases without limitEagde- in each generation, the variation of the indices is related. For
creases, and tends to infinite &<4 me\); this explains instance, in the third generation for eavotthe last index is
the rapid transport between the scattering and the interactiomade to vary fromm+1 to infinity (producing the whole
regions described in Sec. lll. Despite its lack of symmetry,series of homoclinic orbits inside the same gap of the frac-
the CUY117) potential presents the same structure of primi-tal). Notice also that the order in which these sequences of
tive families of PO’s than that of G10. The bifurcation homoclinic orbits appear in thé:-b plots is preserved.
diagrams containing the first families are shown in Fig. 8. Now we can take a further step in our classification pro-
We have included only PO’s up to period 5. Continuation ofcedure, and assign to each different homoclinic orbit a
PO’s of higher periods at low energies presents numericédlwinding number,” p/q, such thatp is the number of sym-
problems due to their high instabilities. The PO’s were lo-bols of the labeling chain, and is the last number in that
cated giving as initial conditions specific homoclinic points chain. Let us remark that gives the total number of outer
of the PUPO, as will be explained in Sec. VI, and continuedturning points, or oscillations in the coordinate, andj the
in energy using a shooting method. total number of unit cells traveled, or oscillations in tke
coordinate; thereforg/q has the physical meaning of a
winding number.
Considering now the PO’s of the system, any given PO
can be assigned also to a winding numphg, with the same
Although the number of trajectories in the chattering re-meaning as above. In Sec. IV we obtained, for instance, PO’s
gion is uncountable, all of them belonging to the same paiwith winding numbers 1/1 to 1/10Fig. 4) for Cu(110). It
of icicles (those labeled with the same chain of numbers buwvas demonstrated that for two-dimensional area-preserving
different signs[12(a)]) correspond to the same kind of maps, the end points of resonance intervals can be organized
trapped trajectories, and therefore can be associated with tleecording to a Farey tree schei81—33. The Farey tree,
same type of homoclinic orbits. The purpose of the presenwhich is equivalent to the continued fraction expansion of
section is to provide a connection between the homoclini¢he irrationals, organizes the rationals in sequences of best
orbits (and consequently the different kinds of chaotic trajec-convergents to a given rational or irrational number. This
tories and the PO’s in the interaction region. It is known thattree can be generated starting from the end points of the unit

V. PERIODIC AND HOMOCLINIC ORBIT STRUCTURES
THROUGH SYMBOLIC DYNAMICS



386 R. GUANTES, F. BORONDO, AND S. MIRET-ARTS 56

o with m andn having the same meaning as in Ef0). The
N ° 1 first two sequencesmjz_ 1 ar_1d 2)_ converging to 1/2 are rep-
1 1 resented with dotted lines in Fig. 10.
/ Let us now analyze how chains of symbols corresponding

\ g to homoclinic orbits can be organized in sequences of con-
vergents similar to those of the Farey tree. First of all, notice
1 / \2 that inside a given gap or interval all homoclinic orbits are
S\\ .,-5 obtained, fixing all symbols in the chain except the last one,
/ AN o which is increased by one each time. Therefore this sequence
. : N2 3 2 converges always to 0/1, the initial point of the interval in
..'5 / Fig. 10. This defines the intragenerational scaling parameter
\ / a. As we numerically observed 2(c)], it does not matter in
S which generation or gap of thé-b plot you are; the posi-
P ] tions of the icicles always scale witta as one goes to the
\ /\ /\ /\ edges of the interval.
S8 71 7 8.7 s To see how the intergenerational self-similarity is
12 13 11 10 11 9 6 achieved, we have to consider sequences of homoclinic or-
FIG. 10. Farey tree organization of the rational numbers. Theblts in consecutive generations, occupying the same relative

integern indicates the number of the generation. The two first Se_posmons with respect to thgarents For instance, take the

quences converging l%)from the “left” and from the “right” have interval bet,ween orbit$2] find [3]; the dathteeretwe,en
been indicated with dashed and dotted lines respectively. them are given by the s_er|@3,4],[3,5],[3,6], ... (see Fig.
9). The daughteroccupying the second placg3,5], corre-
sponds to a winding number 2/5. Taking now tteughters
Yetween this and [3,4], the new series is now

(p+r)/(g+s). The resulting tree is shown in Fig. 10. It is [3,5.61,[3,5.7, .. ., whose second element has a winding

well known [33] that sequences converging to different ra—number of 3/7. Repeating this procedure we obtain the se-

tional or irrational numbers are similar to each other, andiuence: 1/3,2/5,3/7,419,. . , which is precisely the Farey

: P sequence convergent to 1/2 from the “left,” i.e., E4.0)
therefore there are scaling laws implicit in the Farey treeabove withj=2 andm=1. If we take the interval between

structure relating for instance the positions of resonance in=" "
tervals. The scaling laws present in the Farey tree provide aﬂrb'ts [3] and[4], and repeat the proc_edure for the second
lements of successive generations, the sequence

I i f th ling | h in the f X . S
explanation of the scaling laws that we observe in the fracta /4,216,3/8,4/10, . . . is obtained, which is the sequence con-

chattering region of th&;-b plots. This can be seen if we . ! i
consider that sequences of convergents to a given rational geraing to.1/2 W'thT“ZZ f_ollowmg Eq. (10). If we look at
the form 1j (j=1,2,...) can beconstructed according to other relative positions different from the second, the same
the following rule: scheme is valid, but now the convergence is tg béingj
the relative position. One can show that the whole symbolic
tree for homoclinic orbits follows the same organization as

4

[CERA

2 3

5 7 é\\ ;\ ;

/ \ / \ / \\\ / Vo
2 3 3 4 5 v4 4 5

6 9 11 10 11 13 12 9 9

interval, written as 0/1 and 1/1, and calculating the Fare
mediants between twaeighbor rationalsp/q and r/s as

1 the Farey tree for PO’s, if we look at sequences of conver-
m’ (10 gents to a given rational jL/ The correspondence is made
i+ o explicit by the following rules:
(1) For a given homoclinic orbifl,m,n, ... r], the
sequences of daughters of the forphm, ... r,r+jJ,
wheren varies from 1 to infinity as we pass from one gen-[I,m, ... r,r+j,r+2j],...,[I,m, ... r,r+j, ... r+kj]

eration to the next along the Farey tree, ane-1 corre- correspond to a sequence of convergents to the numper 1/
sponds to the first sequenaa=2 to the second sequence, These orbits occupy the same relative position inside a given
etc. Notice that the sequence correspondingitel gener- interval.

ates the best approximation, which is precisely the Farey (2) If I=j+1 (beingl the first number of the chairwe
sequence. For example, fpr=2, the sequences approximat- have the Farey sequence from the “left,” E(LO) above

ing 1/2 are:3,2,3¢ ... form=1; 3224 ... form=2, withm=1.IfI=j—1 we have the Farey sequence from the
etc. The first two sequences were represented with a dashédght,” Eq. (11) with m=1.
line in Fig. 10. (3) In general,l —j=m, m being the number of the se-

All the previous discussions assume convergence to guence convergent to jlin the equations above. >0,
given rational 1j from the “left” of the Farey tree, but we we converge from the “left,” Eq(10), following sequence
can also converge to the same numbers from the “right.” Inm. If m<0 we converge from the “right,” Eq(11), follow-
this case the rule is ing sequenceém|. Notice that form=0 we simply obtain a

sequence of the form/nj in both equations, i.e., the se-
quence is just a multiple of jl/and one can see that the
, (12) homoclinic orbits are a pruning of the corresponding PO
_m (those jumping the same number of unit cells between all the
n+m bounces
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This correspondence means in turn that we have many 1.0
different intragenerational scaling laws if we are close to the
center of the fractal: one for the convergence to 1/1, a dif-
ferent one for the convergence to 1/2, etc. But, since we are ,
interested in the asymptotic self-similar part of the fractal 0.5 1
[12(c)], the asymptotic intragenerational scaling |avis cal-
culated for convergence tojlwhenj tends to infinity. Also ~
one can think that different sequences of convergents to a =
given rational 1j [the sequencem=1,2, ... in Egs.(10) S 004
and(11)] have different scaling laws; however, they are re- A
dundant. The denominators of these sequences always grov
harmonically the only difference being that they are .
“shifted” to the center of the Farey tree byn—1 steps ~0.51 T
before going down to the next generati@ee the dashed and
dotted lines in Fig. 10 This can explain the fact that if we
consider an intergenerational scaling facgras the factor

necessary to scale a given gap or icicle of one generation inta 610 7.0
the gap of thenextgeneration differing by relative posi-
tions, we would have
Bi=alp. (12) FIG. 11. Enlargement of the interaction region of the ho-

moclinic tangle for the He-Q10 scattering aE=21 meV shown

in Fig. 3. Five families of tiles fron{1:8) to (1:12) (thick liney are
shown together with the associated periodic orbits with winding
numbers from%3 to %2 (circles, triangles, squares, asterisks, and dia-
monds, respectively

Recall thatg is the intergenerational scaling factor that
scales icicles or gaps of different generation with siaene

relative position. If a Cantor set for the singularities in the
0:-b plots (Fig. 1) is constructed by removing in each step

the icicles corresponding to the same generation, anthe  \yherez, is the position of thekth PO in the corresponding
step the dimension,, of the set is implicitly defined bj34] symmetry line, a value of, = 0.98 is obtained fok— at a
fixed scattering energy of 21 meV. In practice we had to go
> GPn=1, (13 upto k=156 to achieved convergence in the second decimal
T figure. If we scale in the same way the positions of the ex-
tremes of the icicles in the correspondifgb plot we obtain
whereG; are the widths of the gaps between the icicles ofthe same valuer=0.98, which is precisely the intragenera-
the nth generation, and the sum runs over all of the gapstional scaling law. In this case the convergence to the final
Making use of the fact that, in the same way as the iciclesasymptotic value is slower than f@ (we needed to go up
the widths of the gaps scale asinside the same generation to icicles[1307] for the same convergengcebut the final
and as@ from one generation to the next, and of Ef2), result is identical inside the numerical precision.
one can arrive at the following expression for the fractal Finally, let us point out that the symbolic tree shown in

dimension taking the limih—c [11(a)]: Fig. 10 is valid for hyperbolic dynamics, when PO’s of all
periods, 1f starting withj =1, are accessible for the scatter-
aP+28P=1. (14) ing trajectoriegsince the CPO has turned unstablEhis is

the case for the scattering off Qui7) surfaces atE=21

This equation was used to calculate the intergenerationdn€V. For the C(L10 surface at the same energyonhyper-
scaling lawp once the fractal dimension of the set is known. Polic dynamicy the symbolic tree for homoclinic orbits

In order to see the correspondence of the scaling for PO’§tarts in this case from=8, and PO's of lower periods are
and homoclinic orbits, we plot in Fig. 11 a sequence of fivenot accessible to the scattering trajectories. The Farey tree
tiles for the He-C(110) scattering that can be denoted will then.be truncated, but the same relations than for the
(1:8),(1:9),...,(1:12) and theorresponding fixed points Nyperbolic caséold.
of the symmetric PO’s with winding numbers
1/8,1/9,...,1/12. From the figure it is clear that asymptoti- VI. CONCLUSIONS

ik - e s The Selteig of e atoms from corugated Cu surfaces
P 9 X ' Is known to be classically irregular or chaofit2]. This can

tering trajectory enters the interaction region, if it gets closebe seen for example in the deflection angle vs impact param-

to the stable manifold of a particular unstable PO 't.\.N'" eter plots, where ill-behaved regions of fractal nature appear

Yor certain initial conditions. These chattering regions consist
of smooth subdomains, which repeat on all scales. Moreover,
this structure can be related to the topology of the corre-
B sponding classical trajectori¢$2(a),12(b)].
S S (15) In this paper we have shown that the fractal character of
k _ ’ . .
2~ Zk-1 these scattering function plots can be very well understood

of the PO'’s of the form J/along the symmetry lines accord-
ing to the relation
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when analyzed in phase space. In order to do that we havearey tree organization known for periodic orbits. This cor-
defined suitable Poincaurfaces of section, taking advan- respondence also explains the existence of the asymptotic
tage of the fact that the potential of our system is periodicself-similarity and scaling laws present in the chattering re-
The tiling pattern imposed in phase space by the homoclinigion of all chaotic scattering problem.

tangle of one principal unstable P@UPOQ, corresponding Finally, let us mention that this explicit correspondence
to a motion of the He atom parallel to the surface in thecan be exploited to locate periodic orbits of a desired wind-
asymptotic region, is clearly determinant of all features ofing number. As we know that, close to a homoclinic orbit
the corresponding scattering dynamics. The main charactewhose winding number is a rational of the Farey tree, a pe-
istics of the fractal regiofinvariance with respect to angle of riodic orbit of the same winding number must exist, we sim-
incidence of the He particles, labeling scheme of the icjclesply use the position of the homoclinic orbit, known from the
have been explained by investigating in detail the existingd;-b plot, as an initial guess in an appropiate Poinca@sS
phase-space structures. Also, the main families of symmetriasing for instance a multishooting method for convergence.
PO’s have been obtained as a sequence of higher-order pdewever, we found in practice that only PO’s of low rational
riod bifurcations from a principal stable period-1 ROPO.  winding numbers are easily located since in general high
This PO is the stable companion of the PUPO, which genemwinding numbers are very unstable.

ates the fractal tiling. While the homoclinic tangle of this last
orbit governs the behavior of the chaotic scattering trajecto-
ries, the main features inside the interaction regi@an
KAM island structure, and hyperbolic and nonhyperbolic re- Very useful discussions with Professor C. Jaffel Dr. A.
gimeg seem to be determined by the sequence of bifurcaA. Zembekov are gratefully acknowledged. This work was
tions of the CPO. We have demonstrated, using a simplsupported in part by DGE$Spain under Contract Nos.
symbolic code for generating the sequences of homoclini®B95-71 and PB95-425. R.G. gratefully acknowledges fi-
orbits, that a very close correspondence exists between thrancial support from the Ministerio de Educatip Ciencia
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