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Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering
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In this paper the phase-space structure of a realistic chaotic scattering system, namely, the collisions of He
atoms off Cu surfaces with different degrees of corrugation, is investigated. We demonstrate that the ho-
moclinic tangle generated by a principal unstable periodic orbit, which corresponds to the unperturbed motion
of the He atom traveling parallel to the surface in the asymptotic region, determines the entire scattering
dynamics of the system. The fractal properties and some physical invariant features of the system can be
understood using suitable Poincare´ surfaces of section. Moreover, in this paper we also analyze in detail the
periodic orbit structure in the interaction region, and show how the homoclinic chaotic trajectories can be
organized in a similar fashion to the well-known Farey tree organization for resonances. The consequences of
this analogy for the different scaling laws observed in chaotic scattering problems are discussed.
@S1063-651X~97!13107-5#

PACS number~s!: 05.45.1b, 79.20.Rf
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I. INTRODUCTION

Many processes of chemical and physical interest~gas
phase chemical reactions, adsorption and diffusion on
faces, etc.! can be adequately treated just at the class
level @1,2#, and here the understanding of the Hamiltoni
dynamics and phase space has been determinant in th
velopment of classical and semiclassical theories@5,6#.
These theories are often an easier and accurate enough
native route to more complicated quantum calculations,
many times are based on the assumption that the under
dynamics are chaotic@3,4#. Although the existence of chaoti
scattering in some simple models of chemical reactions
diffraction of atoms from surfaces was observed two deca
ago @7,8# ~and not always properly identified!, only quite
recently has it begun to be intensively studied and charac
ized from the mathematical point of view. Many studies
chaotic scattering have been done with simple models@9#,
mainly area-preserving maps and hard-wall potentials,
though some molecular systems have also been consid
@10–12#. The distinctive feature of scattering systems is
infinite volume of the phase space at a given energy du
the existence of an asymptotic region where the interac
potential can be neglected. The observables are calculat
the final asymptotic region where the dynamics is trivia
integrable, although they obviously depend on the intricac
of the potential in the interaction region. In this sense
knowledge of the bound dynamics within the interaction
gion can help to clarify the long-time behavior of the chao
dynamics~the existence of the set of singularities of the sc
tering functions that connect incoming to outgoin
asymptotic regions!.

The present contribution was motivated by some rec
results of the authors@12# in the numerical investigation o
the classical dynamics of a realistic model for the scatter
of He atoms from Cu surfaces. There, as in previous wo
on other physical scattering systems such as atom-dia
561063-651X/97/56~1!/378~12!/$10.00
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collisions, encounters of artificial satellites, dynamics of v
tices, scattering off a magnetic dipole, etc.@10,13,14#, a frac-
tal structure was observed in the plots of a scattering fu
tion ~final scattering angle or time delays! corresponding to
an underlying Cantor set of singularities. The main scal
laws of this Cantor set were numerically found and appl
in a semiclassical study of diffraction intensities@12#.

The self-similarity and other fractal features of the sc
tering function plots are a direct consequence of the parti
of the phase space into an invariant fractal tiling@11~c!#
which organizes the scattering dynamics in a very system
way. Realistic models for atom-molecule or atom-surface
teractions imply the use of soft potentials or potentials attr
tive for large distances and repulsive for short distances
our case, as in other soft interacting systems with period
ties in the potential@11,15,16#, the asymptotic motion is an
unstable periodic orbit whose stable and unstable manifo
determine the entire scattering dynamics of the system
analogy to previous work in one-dimensional maps a
atom-molecule collisions@19,11# hereafter we will call this
the principal unstable periodic orbit~PUPO!. In this paper
we show, for the scattering of He atoms off corrugated
surfaces, how the use of the Poincare´ surface of section
~SOS! of the homoclinic tangle originated by the PUPO a
given energy provides a coherent picture of the scatte
dynamics and its interaction with the classical obje
present into the bounded region. Moreover, the close rela
existing between chaotic scattering trajectories and the p
cipal periodic orbits~PO’s! of the system will be also ana
lyzed in detail, establishing a connection between the Fa
tree organization of PO’s and the symbolic dynamics
chaotic scattering trajectories. In the chaotic regime,
properties of the scattering functions~fractal dimension of
the invariant set of singularities, scaling laws, escape rate
the chaotic trajectories, etc.! depend on the value of som
parameters of the Hamiltonian. The natural choice for su
parameters in conservative Hamiltonian systems is the t
378 © 1997 The American Physical Society
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56 379PERIODIC ORBITS AND THE HOMOCLINIC TANGLE . . .
energy, and the bifurcations of the main principal families
PO’s with the energy will be considered. Also, the influen
of the corrugation of the surface will be studied by analyz
two different crystallographic faces.

The organization of the paper is as follows. In Sec. II
give a brief account of the model employed, which has b
described elsewhere@12#, and of the main conclusions ob
tained in the numerical investigation of the final scatter
angles vs initial impact parameter plots. In Sec. III, the g
ometry imposed in the phase space by the homoclinic ta
is discussed, and its relation to the results in the final an
vs impact parameter plots described. Section IV is devote
a study of the bounded region of the system, presenting
analysis of the main PO’s and their evolution with energ
The interrelation between the bounded and the scattering
namics is considered in Sec. V. The paper is concluded
summarizing our conclusions in Sec. VI.

II. MODEL SYSTEM AND TRAJECTORY
CALCULATIONS

The problem we have chosen to study is the scatterin
4He atoms off Cu surfaces with different degrees of cor
gation. In particular, elastic collisions with Cu~110! and
Cu~117! will be considered. The system can be modeled w
a two degrees of freedom Hamiltonian

H~Px ,Pz ,x,z!5
Px
21Pz

2

2m
1V~x,z!, ~1!

wherex andz are coordinates parallel and perpendicular
the surface, respectively, andV(x,z) is a corrugated Morse
potential, whose parameters have been taken from the lit
ture @17# and are presented in Table I. It is interesting to n
at this point that the corrugation for Cu~110! is just a sum of
cosine functions, so that the potential is symmetric with

TABLE I. Potential energy surface for the scattering of He fro
Cu surfaces at 21 meV@17#.

Potential energy:V(x,z)5VM(z)1VC(x,z)
Morse potential:VM(z)5D(12e2az)2

D56.35 meV,a51.05 Å21

Coupling potential:VC(x,z)5Vz(z)Vx(x)
Vz(z)5D exp(22az)

Vx~x!5(
n

Frncos2npx

a
1snsin

2npx

a G
Fourier coefficients for Cu~110!:
r 150.03,s150.0
r 250.0004,s250.0

Unit cell length for Cu~110!: a53.6 Å

Fourier coefficients for Cu~117!:
r 150.1828,s1520.0836
r 250.0593,s250.0157
r 350.0116,s350.0002
r 450.0017,s450.0010

Unit cell length for Cu~117!: a59.12 Å
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spect to thex50,a andx5a/2 planes (a being the unit cell
length!. The more corrugated Cu~117! function does not
have this symmetry.

Classical trajectories are propagated starting from the
lowing initial conditions

z05zmax

x052zmaxtanu i1ba

~2!

Pz0
52A2mEcosu i

Px0
5A2mEsinu i ,

wherezmax represents a value ofz sufficiently large so that
the interaction potential can be neglected,b is the normal-
ized impact parameter (0<b<1), E the collision energy,
andu i the initial incident angle. This angleu i initially deter-
mines the partition of the total energy and momentum
tween the two modes.

In previous work@12# many trajectories were calculate
and analyzed. In those papers our attention focused on
transition to chaos, considering the scattering at different v
ues of the incident angleu i at a fixed value of the energy
The onset of chaos was identified in the classical deflec
function ~final scattering angleu f) vs impact parameter plot
when one of the rainbow angles~maxima or minima of the
classical deflection function! reaches a value of 90°@12~a!#.
At these points, what happens is that when the He part
hits the inner wall of the potential~low values ofz), enough
momentum~or translational energy! is transferred from the
perpendicular to the parallel modes, and the trajectory
comes trapped inside the potential well existing along
perpendicular mode. Afterwards, the He particle begins
motion, repeatedly bouncing with the Cu surface, un
enough perpendicular momentum is regained that it
leave the surface. In those flights the particle travels a
tance corresponding to many cell units, loosing memory
the initial conditions. Theu f-b plots then consist of a
smooth, well-behaved part corresponding to direct scatter
and a very ill-behaved region of trapped trajectories cal
the chattering region~see, for example, Fig. 1 below!. The
chattering region consists in turn of a series of smooth s
domains or icicles @10~c!#, separated by regions of mor
complicated behavior containing an infinite number of s
gularities@see Fig. 1~c!#. When these chaotic regions are e
panded they again show the same structure at finer and
scales. The whole structure is then a~multi!fractal @18#.
Moreover, the icicles observed in the chattering regions
theu f-b plots are organized in a hierarchical way. All traje
tories associated with a given icicle are alike, and can
characterized by the number of bounces with the surface
the number of units cells traveled between consecu
bounces. Then a symbolic labeling can be used to clas
them. An extra symbol is required in this case, name
‘‘ 1 ’’ or ‘‘ 2,’’ indicating if a given icicle is situated to the
right or left of the central icicle, which corresponds to th
icicle with a minimum number of unit cells traveled. On
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FIG. 1. Final scattering angleu f ~in degrees! vs impact parameterb for the scattering of4He atoms off~a! Cu~110! surfaces, and~b!
Cu~117! surfaces, at a total energy ofE521 meV and an incident angleu i590°. ~c! Expansion of the chattering region appearing in p
~b!. ~d! Expansion of the gap between icicles@422# and @432# of part ~c!.
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possible unique labeling scheme constructed along this
was given in Ref.@12#~a!, and will be used throughout th
paper.

In Figs. 1~a! and 1~b! the u f-b plots for the Cu~110! and
Cu~117! surfaces at a total energy of 21 meV andu i590°
are presented. The central icicles of the chattering region
both figures correspond to trapped trajectories bounc
twice on the surface and traveling, respectively, eight a
one unit cells in the jump. The number of traveled unit ce
increases by one as we move to the next icicle either to
right or to the left in the chattering region. In Fig. 1~c! we
present, expanded, the chattering region correspondin
Cu~117! @Fig. 1~b!#. In it, all features described are readi
observed. Let us consider now what happens in the g
between icicles of this first generation. For example, an
pansion of the region between icicles@422# and @432# is
presented in Fig. 1~d!. In it one observes the icicles assoc
ated with the trapped trajectories@432,n# for Cu~117!. The
corresponding trajectories bounce three times with the
face, traveling 43 unit cells in the first jump, andn ~begin-
ning from n51 for the two central icicles! in the second.
This pattern, which repeats hierarchically on all scales, w
play an important role in the rest of the discussions in
paper. It allows one to label each icicle bym signed integers,
the firstm21 identifying the generation to which the icicl
belongs, and the last one identifying the position of the ici
within its own generation. As we will discuss later, the fra
tal structure of the chattering region can be conside
e
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asymptotically@sufficiently far apart from the center of th
chattering region, since we see in Figs. 1~c! and 1~d! that the
invariant shape of the pattern is achieved for gaps clos
the edges# a two-scale fractal. We consider that there is o
intragenerational scaling factora mapping a given icicle or
gap of one generation of the fractal into an icicle or g
inside the same generation, and an intergenerational sca
factor b which transforms an invariant pattern of one ge
eration into a pattern of another generation. For Cu~117!,
both scaling factors were numerically found to bea50.98
and b50.000 35@12~c!#. Moreover, these values areinde-
pendentof the incidence angle, and we also found that t
invariant pattern of Figs. 1~c! and 1~d! are identical to the
whole chattering region obtained at grazing angles~approxi-
mately 90°). The same conclusion is true for other scatter
functions such as delay times or other fractal proper
~fractal dimension or escape rate!. In Sec. III we explain this
invariance with respect to the initial angleu i by means of the
SOS of the phase space.

III. HOMOCLINIC TANGLE
AND FRACTAL INVARIANT TILING

As was mentioned in Sec. I, the whole dynamics of t
He-Cu scattering process can be presented in a rather c
pact way by considering the homoclinic tangle@19# formed
in phase space by the stable and unstable manifolds em
ing from the PUPO. According to what was discussed ab
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56 381PERIODIC ORBITS AND THE HOMOCLINIC TANGLE . . .
the origin of the onset of chaos in the preceding secti
the PUPO in our system corresponds to a trajectory in wh
the He atom travels parallel to the Cu surface at an infin
separation of it (z.zmax, Px>0). Since the potential func
tion @17# is periodic alongx, the dynamics of the trajectorie
can be followed quite conveniently by using a (z,Pz) Poin-
caré surface of section ~SOS! taking x5x01na
(n50,1, . . . ,`) as the sectioning plane. Obviousl
x050,a or x05a/2 are good choices to obtain a dynamica
significant SOS, especially in the more symmetric Cu~110!
case~see Fourier coefficients in Table I!.

The corresponding results for an energy of 21 meV
shown in Fig. 2 for both corrugations, Cu~110! and Cu~117!,
considered in this paper and the SOS placed atx050. Notice
in passing that Fig. 1~a! corresponds to theu f-b plot of the
homoclinic tangle unstable branch~propagation forward in
time!. When examined the two plots presented in Fig. 2
very different. At this energy, the scattering for Cu~110!
@Fig. 2~a!# exhibits a mixed dynamics, that is, chaotic traje
tories coexist with regularKAM islands, which are orga
nized in this case around the stable periodic perpendic
motion (x constant!. This corresponds to what is called in th
literature a nonhyperbolic regime@20#, which is character-
ized by presenting an algebraic survival probability or e
time of the trapped trajectories@21#. On the other hand, fo
the Cu~117! surface the manifolds appear much more d
formed, suggesting a more irregular dynamics. The area
closed by the oscillations~lobes and turnstiles@19#! is larger,
which indicates that the transport from the scattering to
trapped@23# region is larger. Also, no visible traces of reg
larity are observed in this region. As we will see in Sec. I
the central stable PO has become unstable. This sugges
the dynamics should be hyperbolic. Proving the hyperbo
ity of a dynamical system is a very difficult task for oth
than simple analytical maps. There are, however, severa
merical criteria to distinguish between hyperbolic and no
hyperbolic regimes. The hyperbolic regime is in gene
characterized by exponential escape rates of the trapped
jectories @21#, and also by a Gaussian distribution in th
Lyapunov exponents spectra@24#. In our case we will show
that the main PO is highly unstable, and that no further
furcations for higher energies take place; this implies that
last homoclinic tangency@19# has taken place, and that w
are in the hyperbolic or fully developed chaotic regime@9#.
Here it is necessary to point out that sometimes power-
escape rates have also been found in hyperbolic sys
@20~a!,20~b!#. This happens in our model too. Since at lo
distances the Morse potential is the dominant part of
interaction, and this potential tends exponentially slowly
the top of the ridge,D, one can see that the PUPO is
parabolic point of the Poincare´ map. Consequently, nearb
orbits diverge only linearly with time and escape ra
present a power law behavior@22#.

There is another aspect of Fig. 2 worth commenting up
The homoclinic tangle partitions phase space into two
connected regions: one external, where only direct scatte
take place; and another internal, corresponding to boun
dynamics, where trajectories are trapped for some time
fore they leave the surface. Due to the symmetries in
potential, this curve is symmetric upon reflection through
Pz50 plane for Cu~110!, and nonsymmetric for Cu~117!.
,
h
e

e

e

-

ar

t

-
n-

e

,
hat
-

u-
-
l
ra-

i-
e

w
ms

e

s

.
-
ng
ed
e-
e
e

In Fig. 3 we plot the pseudoseparatrix of the homoclin
tangle for the Cu~110! surface. It was obtained by propaga
ing only the initial conditions corresponding to the dire
collisions part of Fig. 1~a!. According to the transport theor
of Hamiltonian systems@19#, every trajectory initiated inside
the pseudoseparatrix will enter the interaction region throu
the entrance turnstile, and will remain trapped in it for som
time before leaving it through the exit turnstile@see Fig.
3~a!#. In a recent paper, Tiyapan and Jaffe´ @11~c!# showed
how every group of complex forming trajectories gives ri
to a sequence of tiles inside the interaction region, in suc
way that the whole area can be covered hierarchically w
them. Moreover, the characteristics of this sequence of t
is related to the characteristics of the trajectories. Thus,
fractal character of theu f-b plots is a mere reflection of the
fractal invariant tiling of the interaction region. Let us con
sider, for example, the two central icicles of the chatter
region for Cu~110!, labeled@86#. By propagating them for-
ward and backwards in time the pattern shown with th
lines in Fig. 3~b! is obtained. To help following the dynam
ics, we have numbered in the figure the consecutive ite
tions corresponding to the propagation forward. This pro
gation forward gives the two segments of each tile confin
to the unstable manifold~one segment per icicle!, while the
propagation backward renders the two segments confine

FIG. 2. Homoclinic tangle corresponding to the principle u
stable periodic orbit~PUPO! atE521 meV for the scattering off~a!
Cu~110! and ~b! Cu~117! surfaces.
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382 56R. GUANTES, F. BORONDO, AND S. MIRET-ARTE´S
FIG. 3. ~a! Pseudoseparatrix between direct and chaotic sca
ing for the He-Cu~110! surface collisions atE521 meV. The inner
part of the turnstiles have been marked with thick lines.~b! Family
of tiles ~1:8! corresponding to the@86# icicles. ~c! Homoclinic
tangle associated with the He-Cu~110! scattering principle unstable
periodic orbit ~dots! at E521 meV, and unstable manifold~thick
line! for u i574° at the same energy. Notice that this manifo
corresponds to the onset of chaos in this scattering problem.
the stable branch. The intersection points are the homoc
trajectories belonging both to the stable and unsta
branches, which are asymptotic in the infinite past and fut
to the PUPO. In our case, the homoclinic orbits correspo
to the leftmost and rightmost points of each icicle; for the
u f590°, and therefore constitute the chaotic componen
the dynamics or the invariant Cantor set@18# of singularities
present in theu f-b plots. This set is of measure zero an
countable.

In analogy to the symbolic labeling of the icicles d
scribed in Sec. II, a labeling scheme for the tiles can
devised. Any given trapped trajectory will visit as many til
inside the interaction region as the total number of unit ce
traveled between the first and last bounces~remember that
we have placed our SOS at intervals of periodicitya). Con-
sequently, each different type of trajectory or icicle will giv
rise to a family of tiles characterized by two numbe
(m:n), m being the number of times the tiles cross t
Pz50 line ~equivalent to the generation or number
bounces of the trapped trajectory!, andn the total number of
tiles inside the interaction region~total number of unit cells
jumped!. Notice that there is not a one-to-one correspo
dence between icicles and families of tiles, since in gene
there will be several icicles~at least two, one from the righ
part of the fractal and the other from the left! originating
from the same family. However, although this notation f
the families of tiles is not unique, it is quite convenient f
our purposes because of its analogy with the winding nu
bers of PO’s.

Let us next discuss how the homoclinic tangle obtain
for u i590° can be used to predict and understand the
namics of the He-Cu collisions for other angles of inciden
For u iÞ90° the partition of the energy between the tw
modes will be different from that of the PUPO. However,
is obvious that the initial conditions of Eq.~2! also generate
a manifold in phase space, which can be plot on top of
homoclinic tangle foru i590° @see Fig. 3~c!#. If the manifold
is such that it does not intersect the stable branch of
homoclinic tangle, it will evolve close to the unstable bran
without ever entering the interaction region@the thick line in
Fig. 3~c!#, and the scattering will be regular. On the oth
hand, if a portion of it intersects the stable branch, that p
tion will fall at some point into the entrance lobe of th
turnstile, leading to temporary trapping. Moreover the ma
fold originated by the initial conditions will not cross all th
tiles within the intersected lobe of the stable branch~some of
the inner ones will be missed!, therefore the central part o
the chattering region in theu f-b plots will be different than
that at u i590°, but the lobes intersected will display th
same pattern in theu f-b plot because they follow the sam
tiling as the PUPO does. The corresponding invariant pat
will be the same as that of the chattering region of Fig.
This explains the invariance of the scaling laws and ot
fractal features with respect to the incident angle.

IV. PERIODIC ORBITS IN THE INTERACTION REGION

In this section we will investigate in further detail th
dynamical structure of the interaction region, especially
relation to PO’s. In our system we have a special type of P
Since the potential-energy surface extends to infinity in

r-
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56 383PERIODIC ORBITS AND THE HOMOCLINIC TANGLE . . .
x coordinate and our system is open, the trajectories
mainly unbounded. However, due to the periodicity of t
potential we have some trajectories which are confined
z, executing a periodic motion alongx. Due to the way in
which our SOS is calculated, these trajectories will cros
only in a finite number of points visiting them periodicall
they are the equivalent to the usual PO’s of the more fam
bounded systems.

Periodic orbits form a dense set in phase space. Altho
it is not possible to locate all of them, a general view of t
evolution of the main families of PO’s with some paramet
usually the energy, provides valuable information of t
dominant classical dynamical features. The main families
PO’s are usually defined from Weinstein’s theorem@25#,
which states that around any equilibrium point of the pot
tial a number of PO’s equal to the number of degrees
freedom of the system emerges. Multishooting and rel
ation numerical methods have been applied to propagate
main families and find bifurcations for systems up to s
degrees of freedom@26# in a rather systematic way. How
ever, this procedure is very time consuming since for ev
energy step we can locate only one PO. For Hamilton
systems with some type of symmetry, PO’s having that sy
metry can be more easily generated in a very systematic
by using the method of the propagation of the symme
lines. The essence of the method@27# consists of finding for
each energy the intersections of a symmetry line with
successive iterations under the Poincare´ map.

The dominant symmetry lines can be located by find
the set of points left invariant under the composition o
reflectionsx and time reversalT operators@27# acting on a
phase space pointq5(x01e,z,Px ,Pz) as

sxq5~x02e,z,2Px ,Pz! ~3!

and

Tq5~x01e,z,2Px ,2Pz!. ~4!

This set of points exists in our model only for the Cu~110!
potential, and is given by the line

S05~x0 ,z,Px ,0!, ~5!

wherex050,a or x05a/2. Denoting byP the Poincare´ map
as defined at the beginning of Sec. III and byPn its nth
iteration, it can be shown@27~a!# that the points given by the
intersections

Pn+S0ùS0 ~6!

are periodic orbits of period 2n and divisors.
To obtain the PO’s of an even period, we have to define

addition the symmetry lineS1 made of points left invarian
underP+S0 which is precisely the set of pointsP

1/2+S0, i.e.,
one of the two dominant symmetry lines evolved one-half
the Poincare´ map. Again intersections

Pn+S1ùS0 ~7!

will be PO’s of period 2n11 and divisors. In this way we
can generate all primitive families of symmetric PO’s of d
ferent periods.
re
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The bifurcation diagrams constructed using this proced
are shown in Fig. 4. We only followed up to the fifth itera
tion of the symmetry linesS0 andS1. Some representative
examples of these PO’s are shown in Fig. 5. Two points
worth discussing in relation to Fig. 4. In the first place, w
find in both plots a central period-1 PO~CPO!, which is
common to both symmetry lines and constitutes the m
family, thus originating the other higher period PO’s throu
bifurcations. The second point is that, contrary to what u
ally happens in bounded generic Hamiltonian systems,
behavior is less chaotic, in the sense that unstable PO’s
higher periods disappear, as energy increases. This is se
Fig. 6, where the homoclinic tangle corresponding
E5400 meV is represented. Only the stable CPO seem
survive with a big structure of regularKAM islands around
it, but still some chaos exist due to very high-period unsta
PO’s, although is not visible in the scale of the figure. T
CPO remains stable until very small energies~approximately
4 meV!, when it becomes unstable due to a period-doubl
bifurcation.

The method of propagating symmetry lines allows the
calization of PO’s, but cannot predict which ones will appe
at a given energy. The occurrence of bifurcations giving r

FIG. 4. Periodic orbit bifurcation diagram corresponding to t
He-Cu~110! scattering obtained by propagation of the~a! x05a,
and~b! x05a/2 symmetry lines. Full circles correspond to unstab
periodic orbits, while the stable ones have been represented
empty circles.
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to PO’s can be predicted using Hamiltonian bifurcati
theory @28#. This theory indicates that in two-dimension
systems only five classes of bifurcations can take pla
saddle center or pitchfork, period doubling, touch and
four-island chain, andm-island chain~see Ref.@28~c!# for a
detailed account!.

The location of each new bifurcation of periodm can be
found considering the trace of the Jacobian matrix,

Jm5S ]Pz
m/]Pz

0 ]Pz
m/]z0

]zm/]Pz
0 ]zm/]z0

D , ~8!

wherez0 andPz
0 are the initial values ofz andPz in the SOS,

and zm and Pz
m their values after themth iteration of the

Poincare´ map. According to bifurcation theory at the bifu
cation points the trace of this Jacobian equals two. Moreo
this trace can be related to that of the Jacobian for the C
~period-1 PO!, so that anm bifurcation occurs when

Tr~J1!52 cos~2p j /m!, ~9!

FIG. 5. Periodic orbits of periods 1~CPO!, 4, and 5 for the
He-Cu~110! scattering atE521 meV. The equipotential contou
line has also been included.

FIG. 6. Homoclinic tangle corresponding to the He-Cu~110!
scattering system atE5400 meV.
e:
,

r,
O

with j51 if m<4, j51 and 2 ifm55, and so on. In this
way it is possible to predictlocally the sequence of bifurca
tions of any given PO. It should be emphasized, howev
that there is no general global theory that accounts for
possible bifurcations of a given PO. A notable exception
the theory developed for the He´non map by Tsuchiya and
Jaffébased on the symbolic dynamics of permutation grou
@29#.

In Fig. 7~a! the CPO Jacobian matrix trace as a functi
of the energy is represented. The bifurcations predicted
Eq. ~9! and observed in Fig. 4 have also been marked in
figure. Note that according to Eq.~9! an accumulation of
bifurcations of increasingly higher period is expected as
approach the original saddle-center bifurcation. For ma
chaotic scattering systems the generic route for the onse
chaos has been described to be the appearance of a sa
center bifurcation creating one stable PO and one unst
PO ~the CPO and the PUPO in our case! @9,10~e!#, with the
homoclinic oscillations giving rise to complex formation
Our model system has the peculiarity that the trace of
CPO tends asymptotically to the point of that bifurcation
the energy increases; that is, we always have some regio
chaos. In fact, the PUPO has Tr(J1)52 ~it is a parabolic
orbit!. Obviously, this is a problem of our model potentia
since at high energies only direct scattering is expected to
observed experimentally. On the other side of the bifurcat
diagram the CPO remains stable to very low energ

FIG. 7. Trace of the central periodic orbit~CPO! Jacobian ma-
trix for the scattering off~a! Cu~110! and ~b! Cu~117! surfaces.
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where it becomes unstable due to a period-doubling bifu
tion.

We will end this section with some comments about
dynamics for the Cu~117! surface. In this case the potenti
has no reflection symmetry, and therefore it is not possibl
use the method of symmetry line propagation to constr
bifurcation diagrams. However, it is still possible to obta
some valuable information from the Hamiltonian bifurcati
theory. The CPO was calculated and happens to be
similar to that for Cu~110!, although without showing the
same symmetry. The trace of the Jacobian, as a functio
the energy, is shown in Fig. 7~b!; in it the locations of the
main bifurcations have been indicated. This PO turns
stable atE.89 meV due to a period-doubling bifurcation
after which the system becomes hyperbolic@remember the
homoclinic tangle in Fig. 2~b!#. Also, Fig. 7~b! shows that
the Lyapunov exponent decreases without limit asE de-
creases, and tends to infinite at (E<4 meV!; this explains
the rapid transport between the scattering and the interac
regions described in Sec. III. Despite its lack of symmet
the Cu~117! potential presents the same structure of prim
tive families of PO’s than that of Cu~110!. The bifurcation
diagrams containing the first families are shown in Fig.
We have included only PO’s up to period 5. Continuation
PO’s of higher periods at low energies presents numer
problems due to their high instabilities. The PO’s were
cated giving as initial conditions specific homoclinic poin
of the PUPO, as will be explained in Sec. VI, and continu
in energy using a shooting method.

V. PERIODIC AND HOMOCLINIC ORBIT STRUCTURES
THROUGH SYMBOLIC DYNAMICS

Although the number of trajectories in the chattering
gion is uncountable, all of them belonging to the same p
of icicles ~those labeled with the same chain of numbers
different signs @12~a!#! correspond to the same kind o
trapped trajectories, and therefore can be associated with
same type of homoclinic orbits. The purpose of the pres
section is to provide a connection between the homocl
orbits ~and consequently the different kinds of chaotic traje
tories! and the PO’s in the interaction region. It is known th

FIG. 8. Periodic orbit bifurcation diagram corresponding to t
He-Cu~117! scattering.
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close to a homoclinic point there is an infinite sequence
PO’s @30# with increasing period. This fact is based on t
existence of a Birkhoff normal form convergent around t
stable and unstable manifolds of an unstable fixed poin
the Poincare´ map. Indeed, unstable PO’s have been cal
lated analytically using the Birkhoff normal form for qua
dratic maps. In our case the correspondence between the
moclinic points and PO’s arises naturally if we consider th
each homoclinic point of the PUPO corresponds to a cer
chaotic trajectory, and there can be a PO of similar topolo
associated with it. In order to envisage this relation, let
consider simple symbolic schemes for homoclinic orbits a
PO’s.

Following the same labeling scheme used in Sec. II
classify the icicles of the chattering region, a symbolic tr
for the organization of homoclinic orbits can be generat
The result is shown in Fig. 9. Here the symbolic chains ha
the same meaning as for the icicles, except for the fact
the signs have now been dropped since we are not intere
in distinguishing between the left and right parts of the fra
tal for homoclinic orbits. Each orbit in thei th generation
~making i bounces against the surface! is labeled byi inte-
gers. The first one gives the number of unit cells jumped
the first bounce, the second the number of unit cells jum
jointly in the first and second bounce, and so on. Notice th
in each generation, the variation of the indices is related.
instance, in the third generation for eachm the last indexn is
made to vary fromm11 to infinity ~producing the whole
series of homoclinic orbits inside the same gap of the fr
tal!. Notice also that the order in which these sequence
homoclinic orbits appear in theu f-b plots is preserved.

Now we can take a further step in our classification p
cedure, and assign to each different homoclinic orbit
‘‘winding number,’’ p/q, such thatp is the number of sym-
bols of the labeling chain, andq is the last number in tha
chain. Let us remark thatp gives the total number of oute
turning points, or oscillations in thez coordinate, andq the
total number of unit cells traveled, or oscillations in thex
coordinate; thereforep/q has the physical meaning of
winding number.

Considering now the PO’s of the system, any given P
can be assigned also to a winding numberp/q, with the same
meaning as above. In Sec. IV we obtained, for instance, P
with winding numbers 1/1 to 1/10~Fig. 4! for Cu~110!. It
was demonstrated that for two-dimensional area-preser
maps, the end points of resonance intervals can be organ
according to a Farey tree scheme@31–33#. The Farey tree,
which is equivalent to the continued fraction expansion
the irrationals, organizes the rationals in sequences of
convergents to a given rational or irrational number. T
tree can be generated starting from the end points of the

FIG. 9. Construction tree for the first three generations of
moclinic orbits in the He-Cu~110! scattering atE521 meV.
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interval, written as 0/1 and 1/1, and calculating the Fa
mediants between twoneighbor rationals p/q and r /s as
(p1r )/(q1s). The resulting tree is shown in Fig. 10. It
well known @33# that sequences converging to different r
tional or irrational numbers are similar to each other, a
therefore there are scaling laws implicit in the Farey t
structure relating for instance the positions of resonance
tervals. The scaling laws present in the Farey tree provide
explanation of the scaling laws that we observe in the fra
chattering region of theu f-b plots. This can be seen if w
consider that sequences of convergents to a given ration
the form 1/j ( j51,2, . . . ) can beconstructed according to
the following rule:

1

j1
m

n

, ~10!

wheren varies from 1 to infinity as we pass from one ge
eration to the next along the Farey tree, andm51 corre-
sponds to the first sequence,m52 to the second sequenc
etc. Notice that the sequence corresponding tom51 gener-
ates the best approximation, which is precisely the Fa
sequence. For example, forj52, the sequences approxima
ing 1/2 are:13,

2
5,

3
7,

4
9, . . . for m51; 1

4,
2
6,

3
8,

4
10, . . . for m52,

etc. The first two sequences were represented with a da
line in Fig. 10.

All the previous discussions assume convergence t
given rational 1/j from the ‘‘left’’ of the Farey tree, but we
can also converge to the same numbers from the ‘‘right.’’
this case the rule is

1

j2
m

n1m

, ~11!

FIG. 10. Farey tree organization of the rational numbers. T
integern indicates the number of the generation. The two first
quences converging to12 from the ‘‘left’’ and from the ‘‘right’’ have
been indicated with dashed and dotted lines respectively.
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with m andn having the same meaning as in Eq.~10!. The
first two sequences (m51 and 2! converging to 1/2 are rep
resented with dotted lines in Fig. 10.

Let us now analyze how chains of symbols correspond
to homoclinic orbits can be organized in sequences of c
vergents similar to those of the Farey tree. First of all, not
that inside a given gap or interval all homoclinic orbits a
obtained, fixing all symbols in the chain except the last o
which is increased by one each time. Therefore this seque
converges always to 0/1, the initial point of the interval
Fig. 10. This defines the intragenerational scaling param
a. As we numerically observed@12~c!#, it does not matter in
which generation or gap of theu f-b plot you are; the posi-
tions of the icicles always scale witha as one goes to the
edges of the interval.

To see how the intergenerational self-similarity
achieved, we have to consider sequences of homoclinic
bits in consecutive generations, occupying the same rela
positions with respect to theparents. For instance, take the
interval between orbits@2# and @3#; the daughtersbetween
them are given by the series@3,4#,@3,5#,@3,6#, . . . ~see Fig.
9!. The daughteroccupying the second place,@3,5#, corre-
sponds to a winding number 2/5. Taking now thedaughters
between this and @3,4#, the new series is now
@3,5,6#,@3,5,7#, . . . , whose second element has a windi
number of 3/7. Repeating this procedure we obtain the
quence: 1/3,2/5,3/7,4/9,. . . , which is precisely the Farey
sequence convergent to 1/2 from the ‘‘left,’’ i.e., Eq.~10!
above withj52 andm51. If we take the interval between
orbits @3# and @4#, and repeat the procedure for the seco
elements of successive generations, the seque
1/4,2/6,3/8,4/10, . . . is obtained, which is the sequence c
verging to 1/2 withm52 following Eq. ~10!. If we look at
other relative positions different from the second, the sa
scheme is valid, but now the convergence is to 1/j , being j
the relative position. One can show that the whole symbo
tree for homoclinic orbits follows the same organization
the Farey tree for PO’s, if we look at sequences of conv
gents to a given rational 1/j . The correspondence is mad
explicit by the following rules:

~1! For a given homoclinic orbit@ l ,m,n, . . . ,r #, the
sequences of daughters of the form@ l ,m, . . . ,r ,r1j ],
@ l ,m, . . . ,r ,r1j ,r12 j ] , . . . , @ l ,m, . . . ,r ,r1 j , . . . ,r1k j ]
correspond to a sequence of convergents to the numberj .
These orbits occupy the same relative position inside a gi
interval.

~2! If l5 j11 ~being l the first number of the chain! we
have the Farey sequence from the ‘‘left,’’ Eq.~10! above
with m51. If l5 j21 we have the Farey sequence from t
‘‘right,’’ Eq. ~11! with m51.

~3! In general,l2 j5m, m being the number of the se
quence convergent to 1/j in the equations above. Ifm.0,
we converge from the ‘‘left,’’ Eq.~10!, following sequence
m. If m,0 we converge from the ‘‘right,’’ Eq.~11!, follow-
ing sequenceumu. Notice that form50 we simply obtain a
sequence of the formn/n j in both equations, i.e., the se
quence is just a multiple of 1/j and one can see that th
homoclinic orbits are a pruning of the corresponding P
~those jumping the same number of unit cells between all
bounces!.
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56 387PERIODIC ORBITS AND THE HOMOCLINIC TANGLE . . .
This correspondence means in turn that we have m
different intragenerational scaling laws if we are close to
center of the fractal: one for the convergence to 1/1, a
ferent one for the convergence to 1/2, etc. But, since we
interested in the asymptotic self-similar part of the frac
@12~c!#, the asymptotic intragenerational scaling lawb is cal-
culated for convergence to 1/j when j tends to infinity. Also
one can think that different sequences of convergents
given rational 1/j @the sequencesm51,2, . . . in Eqs.~10!
and ~11!# have different scaling laws; however, they are
dundant. The denominators of these sequences always
harmonically, the only difference being that they ar
‘‘shifted’’ to the center of the Farey tree bym21 steps
before going down to the next generation~see the dashed an
dotted lines in Fig. 10!. This can explain the fact that if we
consider an intergenerational scaling factorb i as the factor
necessary to scale a given gap or icicle of one generation
the gap of thenext generation differing byi relative posi-
tions, we would have

b i5a ib. ~12!

Recall thatb is the intergenerational scaling factor th
scales icicles or gaps of different generation with thesame
relative position. If a Cantor set for the singularities in t
u f-b plots ~Fig. 1! is constructed by removing in each ste
the icicles corresponding to the same generation, at thenth
step the dimensiondn of the set is implicitly defined by@34#

(
i
Gi
Dn51, ~13!

whereGi are the widths of the gaps between the icicles
the nth generation, and the sum runs over all of the ga
Making use of the fact that, in the same way as the icic
the widths of the gaps scale asa inside the same generatio
and asb from one generation to the next, and of Eq.~12!,
one can arrive at the following expression for the frac
dimension taking the limitn→` @11~a!#:

aD12bD51. ~14!

This equation was used to calculate the intergeneratio
scaling lawb once the fractal dimension of the set is know

In order to see the correspondence of the scaling for P
and homoclinic orbits, we plot in Fig. 11 a sequence of fi
tiles for the He-Cu~110! scattering that can be denote
(1:8),(1:9),. . . ,(1:12) and thecorresponding fixed points
of the symmetric PO’s with winding number
1/8,1/9,. . . ,1/12. From the figure it is clear that asympto
cally the homoclinic orbit~corner of the tile! tends to the
corresponding PO. It is reasonable to think that, once a s
tering trajectory enters the interaction region, if it gets clo
to the stable manifold of a particular unstable PO it w
remain close to it during some time. If we scale the positio
of the PO’s of the form 1/j along the symmetry lines accord
ing to the relation

dk5
zk112zk
zk2zk21

, ~15!
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wherezk is the position of thekth PO in the corresponding
symmetry line, a value ofdk50.98 is obtained fork→` at a
fixed scattering energy of 21 meV. In practice we had to
up to k556 to achieved convergence in the second deci
figure. If we scale in the same way the positions of the
tremes of the icicles in the correspondingu f-b plot we obtain
the same valuea50.98, which is precisely the intragener
tional scaling law. In this case the convergence to the fi
asymptotic value is slower than fordk ~we needed to go up
to icicles @1306# for the same convergence!, but the final
result is identical inside the numerical precision.

Finally, let us point out that the symbolic tree shown
Fig. 10 is valid for hyperbolic dynamics, when PO’s of a
periods, 1/j starting with j51, are accessible for the scatte
ing trajectories~since the CPO has turned unstable!. This is
the case for the scattering off Cu~117! surfaces atE521
meV. For the Cu~110! surface at the same energy~nonhyper-
bolic dynamics! the symbolic tree for homoclinic orbits
starts in this case fromj58, and PO’s of lower periods ar
not accessible to the scattering trajectories. The Farey
will then be truncated, but the same relations than for
hyperbolic casehold.

VI. CONCLUSIONS

The scattering of4He atoms from corrugated Cu surfac
is known to be classically irregular or chaotic@12#. This can
be seen for example in the deflection angle vs impact par
eter plots, where ill-behaved regions of fractal nature app
for certain initial conditions. These chattering regions cons
of smooth subdomains, which repeat on all scales. Moreo
this structure can be related to the topology of the cor
sponding classical trajectories@12~a!,12~b!#.

In this paper we have shown that the fractal characte
these scattering function plots can be very well underst

FIG. 11. Enlargement of the interaction region of the h
moclinic tangle for the He-Cu~110! scattering atE521 meV shown
in Fig. 3. Five families of tiles from~1:8! to ~1:12! ~thick lines! are
shown together with the associated periodic orbits with wind
numbers from1

8 to
1
12 ~circles, triangles, squares, asterisks, and d

monds, respectively!.
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388 56R. GUANTES, F. BORONDO, AND S. MIRET-ARTE´S
when analyzed in phase space. In order to do that we h
defined suitable Poincare´ surfaces of section, taking advan
tage of the fact that the potential of our system is period
The tiling pattern imposed in phase space by the homocl
tangle of one principal unstable PO~PUPO!, corresponding
to a motion of the He atom parallel to the surface in t
asymptotic region, is clearly determinant of all features
the corresponding scattering dynamics. The main charac
istics of the fractal region~invariance with respect to angle o
incidence of the He particles, labeling scheme of the icicl!
have been explained by investigating in detail the exist
phase-space structures. Also, the main families of symme
PO’s have been obtained as a sequence of higher-orde
riod bifurcations from a principal stable period-1 PO~CPO!.
This PO is the stable companion of the PUPO, which gen
ates the fractal tiling. While the homoclinic tangle of this la
orbit governs the behavior of the chaotic scattering trajec
ries, the main features inside the interaction region~a
KAM island structure, and hyperbolic and nonhyperbolic
gimes! seem to be determined by the sequence of bifur
tions of the CPO. We have demonstrated, using a sim
symbolic code for generating the sequences of homocl
orbits, that a very close correspondence exists between
organization of homoclinic scattering trajectories and
H

ce
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.
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pe-
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le
ic
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e

Farey tree organization known for periodic orbits. This co
respondence also explains the existence of the asymp
self-similarity and scaling laws present in the chattering
gion of all chaotic scattering problem.

Finally, let us mention that this explicit corresponden
can be exploited to locate periodic orbits of a desired win
ing number. As we know that, close to a homoclinic or
whose winding number is a rational of the Farey tree, a
riodic orbit of the same winding number must exist, we si
ply use the position of the homoclinic orbit, known from th
u f-b plot, as an initial guess in an appropiate Poincare´ SOS
using for instance a multishooting method for convergen
However, we found in practice that only PO’s of low ration
winding numbers are easily located since in general h
winding numbers are very unstable.
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